Point 19


Intro

Pathway

Deficit

Overview

Problems


Contents

Anatomy

 

 

While at first glance it appears that contraction of the superior oblique turns the eye down and out, the rest of the story (Paul Harvey would love this) is slightly more complicated. If you are interested, read on! The vector diagram resolves the arrow R­B into effective components. Vector R­A depresses the eye around the lateral axis. Vector R­C abducts the eye around the vertical axis and intorts (medial rotation) the eye around the anteroposterior axis. Therefore, vector R­B acts to depress, abduct and intort the eye.

When the eye is in the primary position, the superior oblique lies medial to the A-P axis of the globe. However, when the eye is adducted, the line of pull of the tendon of the superior oblique is parallel to the A-P axis of the globe. In this position, none of the actions of the muscle are dissipated in the other actions (abduction and intorsion). Hence the clinical test for the strongest action of the superior oblique is to ask the patient to look in (medially) and then down.

Rotational Axes of the Eye

Axes of the Superior Oblique

Torsion of the Eyes with CN IV Injury

A 4th nerve lesion causes atrophy of the superior oblique muscle. When looking down and in (medially) with the bad eye there will be DIPLOPIA. The false image will lie below the true image (vertical diplopia) and will be somewhat oblique (torsional diplopia). The weakness of downward movement of the affected eye, most markedly when the eye is turned inward, results in the patient complaining of special difficulty in reading or going downstairs.

Compensation for paralyzed Left SOThe weakness of the superior oblique in the primary position (looking straight ahead) results in the "bad" eye being slightly extorted and elevated due to the unopposed action of the inferior oblique. This will result in torsional and vertical diplopia. For instance, if the LEFT superior oblique is paralyzed, the LEFT eye is extorted and elevated. In order to get rid of the torsional part of the double vision, the patient will tilt their head to the side OPPOSITE the paralyzed muscle, that is to the RIGHT. This causes reflex (from the otoliths) intorsion of the normal RIGHT eye (on side of head tilt) so that the vertical axis of the two eyes become parallel (the eye associated with the paralyzed superior oblique is already extorted by the unopposed inferior oblique). To alleviate the vertical diplopia, the patient will also FLEX his/her chin when tilted to the RIGHT. In this position the patient will have to elevate the normal RIGHT eye in order to look straight ahead. The "bad" (LEFT) eye is already elevated and when the two eyes are located at the same vertical (up-down) position in the socket, the vertical diplopia is ameliorated.

REMEMBER, LESION OF TROCHLEAR NERVE=HEAD TILTED AWAY FROM PARALYZED MUSCLE; HEAD ALSO FLEXED IN THIS POSITION. HOWEVER, IF LESION IS IN THE TROCHLEAR NUCLEUS, HEAD TILT=TOWARDS THE LESION